# Midterm 2 - Review - Problems 

Peyam Ryan Tabrizian

Monday, March 18th, 2013

## 1 Linear transformations and matrices

## Problem 1:

Suppose $V$ is a finite-dimensional vector space and $T \in \mathcal{L}(V, W)$ be invertible. Let $\left(v_{1}, \cdots, v_{n}\right)$ be a basis for $V$.
(a) Show that $\left(T\left(v_{1}\right), \cdots, T\left(v_{n}\right)\right)$ is a basis for $W$
(b) What is the matrix $A$ of $T$ with respect to the basis $\left(v_{1}, \cdots, v_{n}\right)$ of $V$ and $\left(T\left(v_{1}\right), \cdots, T\left(v_{n}\right)\right)$ of $W$ ?

## Problem 2:

Suppose $A$ and $B$ are $n \times n$ matrices such that $A B=I$. Show that $B A=I$.

## Problem 3:

(3.13) Suppose $V$ and $W$ are finite-dimensional vector spaces and $U$ is a subspace of $V$. Show that there exists $T \in \mathcal{L}(V, W)$ such that $N u l(T)=U$ if and only if $\operatorname{dim}(U) \geq \operatorname{dim}(V)-\operatorname{dim}(W)$

## 2 Invariant subspaces and eigenstuff

## Problem 4:

(Exercise 1 in Homework 6, with $n=2$ )
Suppose $V$ is a finite-dimensional vector space and $T \in \mathcal{L}(V)$. Suppose $V=U \oplus W$, where $U$ and $W$ are $T$-invariant subspaces of $V$.

Let $\left(u_{1}, \cdots, u_{m}\right)$ be a basis for $U$ and $\left(w_{1}, \cdots, w_{k}\right)$ be a basis for $W$.
Show that the matrix $A$ of $T$ with respect to the basis $\left(u_{1}, \cdots, u_{m}, w_{1}, \cdots, w_{k}\right)$ of $V$ (you may assume it's a basis) is of the form:

$$
A=\left[\begin{array}{ll}
B & O \\
O & C
\end{array}\right]
$$

where $B$ is a $m \times m$ matrix, and $C$ is a $k \times k$ matrix!

## Problem 5:

Suppose that $W$ is a $T$-invariant subspace of $V$. Suppose that $v_{1}+v_{2}$ is in $W$, where $v_{1}$ and $v_{2}$ are eigenvectors of $T$ corresponding to distinct eigenvalues. Prove that $v_{1}$ and $v_{2}$ both belong to $W$.

## Problem 6:

(if time permits, 5.3) Show that if $U$ is a subspace of $V$ that is invariant under every operator on $V$, then $U=\{0\}$ or $U=V$.

